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General Solution for Excitation by Slotted
Aperture Source in Conducting Cylinder

with Concentric Layering

JAMES R. WAIT, FELLOW, IEEE

Abstract — We present a general matrix anafysis for the electromagnetic

fields produced by an aperture source on the inner metallic snrface of a

concentrically layered structure. Each layer is homogeneous and char-

acterized by arbhry permittivity, conductivity and magnetic permeablli~.

The structure itself is assumed to be of infinite leng@ so Maxwell’s

equations yield separable solutions. An expficit result is given for the

electric current density on the inner metaflic cylindrical surface which

could model the mandrel in a borehole logging tool.

I. INTRODUCTION

I N MICROWAVE logging of boreholes in applied geo-

physics, the objective is to launch a lateral wave into the

formation that can be used as a mechanism to infer the

electrical properties [1], [2]. Complications arise because a

fluid layer (e.g., oil-based mud) is in the hole. Also, the

region beyond the borehole boundary is invaded, so we are

really dealing with a cylindrically concentric system, at

least in the ideal case where the axial nonuniformities are

ignored or can be separately accounted for. Fig. 1.

We outline a general solution of the configuration with a

view to providing a framework for numerical estimates for

any specific parameters. We treat the problem in a general

context to maintain the flexibility y in later applications.

II. STATEMENT OF PROBLEM

The general configuration is illustrated in Fig. 1. With

respect to a cylindrical coordinate system (p, O, z ), the

inner surface at p = al is assumed to be perfectly conduct-

ing except over a finite aperture, as we discuss below.

Concentric homogeneous regions are bounded by the cy-

lindrical surfaces p = a2, a3,. . ., aN, also as shown in Fig.

1. For the nth region, for an< p < an+ ~, the conductivity,

permittivity, and permeability are denoted by o., c., and

p., respectively. This subproblem is shown in Fig. 2.
For cylindrical configurations where the structure is write

invariant in the z direction, it is convenient to employ

electric and magnetic Hertz vectors @ and ~V, respec-

tively, where 1,~ is a unit vector in the z direction, and U

and V are scalar functions [3]. Consequently, we are led to
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Fig. 2. End view of n th concentric region.
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where Um( A) and VM( A ) are the corresponding (double)

IEEE Log Number 8612440. Fourier transforms. Symbolically, we express (1) and (2) in
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the form Using (8)–(11), the transforms of the field components

u= rum (3) are

and -%(P) =A2[- uKn(unP)] +C; [- u%(u.P)] (10

v=rvm. (4) ~zm(P) = -%[- U:Km(unP)] + %[- WJWJ)] (17)

The field components in the region an < p < an+ ~ are

obtained by operating on the Hertz vectors; thus, ~+m(P) = – :[A:K.(unP) +c:Im(unP)l

l?= ( – y; + grad div) ~U – ipnti curl ~V (5) + i/t.@ [B: KA(unP)+ %~L(%P)l % (18)

and
~= (– y: +graddiv)@+(u. + ic.o)curl@ (6) ‘

where ~@m(P) = – ~[B;K.(”nP)+D:Im(unP)l

Yrl= [@#J(% +%0)]1/2 (7) -(o. + itnU)[A~K:(U.p)+ CJI~(Unp)] On (19)

is the propagation constant appropriate for the adopted where the primes indicate differentiation with respect to

time factor exp (i@t). Unp. The A dependence of E=~( p), etc., is understood if not

Using (5) and (6), the transformed field components in shown here explicitly.

the z and @ directions, for an < p < a.+ ~, are obtained

from III. MATRIX SOLUTION

Ez~ = – v~um (8) An equivalent matrix form of (16)-(19)

Hz. = – v:v~ (9) z(P) = [~XP)]~;

m~ a Vm where
E~~=– —UM+ipno —

ap

(10)

P

11
J%(P)

mA a Um Hzm(P)
Hom=–7vm –(un+iEnu)—

ap
(11) ~m(P) = ~+m(p)

where Hjm(P)

v;= (A2 + y:)l’2. (12) and

Here, U~ and Vm satisfy the second-order differential

11
m

equation of the Bessel type ~:= $

(

laa
2 u.

)

p—–v:–; .0.

c:

—— (13) D:
p 8P ap P J“m

are column vectors and where

[P;(p)] =

is

(20)

(21)

(22)

(23)

I–rfnvnK~(vnp) – ‘K~(vnp) Qlm(vnp)– c$nunl; (vnP) – p

P

The appropriate general solutions of (13) are
is a 4 X 4 matrix with indicated p-dependent elements.

Here, d. = u. + iticn is the complex conductivity or admit-

Um=A~K~(vnp)+ c;~~(vnp) (14) tivity of the nth region bounded by p = au and an+,.
We now introduce the concept of a propagation matrix

and
by indicating how the field components at, say, p = an are

V~ = B: K~(unp) + D~~~(unp) (15) related to those at p = an+,. Thus, for example, from (20),

we have
where 1~ and Km are modified Bessel functions of order

~m(an+l) = [Pl(an+l)l~l.m and argument Vnp. The coefficients A:, B:, Cl, and
(24)

D: are yet to be determined. Now, assuming that the inverse matrix exists, it follows
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that and

G~=[P;(an+l)] -lFM(an+l). (25) (33)

Then, with a further application of (20), it is evident that where r is the double Fourier transform operator defined

in accordance with (3) and (4). Now, in our statement of
~~ ( a. ) = [p; ( a. )1[PJ(%+1)1-l~t(%+1) (26) the problem, we specify the aperture fields, so the desired

where n=l,2,2, . . . . Of course, (26) can be amlied recur- transforms are obtained from the inverse operations inci-

sively to give

Fj(al)

which relates

p=aN. This

provided the

free.

. . . . .
cated symbolically by

= ~fi~ [P:(an)] [F’#(an+l)] ‘l~(aN) (27) and
E=n(al, A)=r-lEz(al, A,z)

the field column vector at p = al to that at E@~(al, A)= I’-lE@(al, A, z).
result given by (27) holds quite generally

N – 1 regions are homogeneous and source-
For example, to be explicit,

(34)

(35)

Ezm(%! ~)
Now, in the context of the present problem, we can say

(2:), /::[~2nEZ(a,>+> Z)e+’m@d+]e+iAzdZ. (36)
something about the form of the fields in the semi-infinite =-

external region. That is, for p > aN, the coefficients Cfl

and D: are zero because the function ~~( Vnp) is not A case of some interest is when the aperture is in the
bounded as p ~ co. Thus,

[

– v~K~(vNaN ) o

0 – u~Km(vNaN ) 1

1
mA

F~(aN) = – ~K. (uNaN)

I

[1

‘( ) :;.ipNtivNK~ uNaN

m

—
‘(6NvNK~ vNa N) - ~Km(vNaN)

(28)

Now this result can be inserted into (27) to obtain an

equation of the form

[]11
EZ~(al) S1l S21

form of a think circumferential slot bounded by – +0 < +

[1
<+0and ZO– d < z < ZO+ d (see Fig. 3). Within the slot,

H2M(a1) S12 S22 Al
(29)

we will assume the vertical field has the form

EO~(al) = S13 S23 B:

()

V. ?@
~@~(U1) ’14 ’24 E=(al, +,z) =ficos —

2$”
(37)

where the S‘s are the elements of a 2 x 4 matrix. Now, in
-,

particular, we see that and is zero outside. Here, the” voltage” at the center of the

slot is denoted by VOwhile it is to vanish at the ends of the

[2::!1=[::21[::1’30)‘O1lOwsslot (i.e., at + = + @O).Now we see that (36) is reduced as

and then Ez~(al, A)

Equation (31) is a relation connecting the Fourier coeffi-

cients A:(A) and B;(A) for the external fields in terms of

(?/+.) sin(~d) +l~zO
=~cos(m$O) , ~ ,2

Ad e

the Fourier coefficients E,~(al, A) and E@~(al, A) for the
\–J2+0

– m2

aperture electric field at the inner surface.

IV. SPECIFIC EXCITATION MODELS
sin~ d 97’2

—
~+0 Ad e

+ tkzo—

()
for m2 + —

2+0 “
(38)

To deal explicitly with the aperture conditions at the

inner surface, we first note that the aperture electric fields Here, we note that, for d sufficiently small, the factor

can be represented in the form (sin Ad)/Ad can be replaced by 1. Also, in the case of the

Ez(al, ~,z)=I’EZ~(al, A) (32) thincircumferential slot, the E+ component of the field
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Fig. 3. Circumferentially slotted aperture.

can be neglected. Thus, in the example just considered,

E+~( al, A) is effectively zero.

Another particular source model is a narrow axial slot

bounded by –A<+< A and –s<z<,s (see Fig. 4). A

reasonable assumption for the circumferential field within

the slot is

E@(a, @,z)=Q
2; Af(z)1

(39)

where f(z) is the distribution of the aperture field in the

axial direction. We choose the normalization f(0) = 1 so

that VI is then the “ voltage” at the center of the slot. Now

(35) has the explicit form

VI sinmA s

Jfo “Azdz.
= 4r2a1 mA -.

ze (40)

Now, if A is sufficiently small, (sin mA)/(mA) can be

replaced by 1. Furthermore, in the case of a thin axial slot,

E=( al,+) within the aperture is negligible so that, in this
case, Ezm ( al, A) is effectively zero.

We have only shown two specific examples of slot

geometry. Of course, there are many other possibilities.
For some purposes, we may wish to employ an array of

slot apertures. If we can neglect the mutual coupling, the

analysis is very straightforward, being just a matter of

integration over the assumed aperture fields.

V. INDUCED SURFACE CURRENT

For the borehole applications, we are interested prim-

arily in detecting the induced surface current density on

the inner metallic boundary (e.g., the mandrel). Thus, the

relevant quantities are Hz(al, +, z) and H@(al, $, z), which

have dimensions of A/m. Thus, we need to evaluate

z

d~-.-___.

W
-----7-.,,

,--- ,.

Fig. 4. Axially slotted aperture.

where, in accordance with (29) and (30),

[2%:;1=[::2][2:2]-’[H:::II
(42)

The elements in this key matrix operation are obtained

from (27). To be explicit;

[1

s S2111

s SZ2
N–1

12

s S23
= Q [PJ(an)] [PJ(an+l)]-’

13

s S2414

—
—

— —
—:1

(43)

where the latter 2 X 4 matrix is given in (28)

VI. CONCLUDING REMARKS

While the general evaluation of the field integrals is not

a trivial task, certain physical concepts are evident from

the preceding analysis. For example, in dealing with (41),

we must cope with an integral of the form

F~(z) =~+@f~(A)e-’~zdA (44)
—cc

where the transform f~( A ) is known as a function of A for

each integer m. The integration contour is along the entire

real axis of A, as indicated in the discussion below. Now,

clearly we need to evaluate the inverse transform F~( z ) as

a function of z. The task is quite similar to a similar class

of problems encountered in wave transmission in planar

and spherical geometries such as the earth–ionosphere

waveguide [4].

In the ideal case here, we are attempting to launch a

wave into the outer formation. Such a wave propagates

parallel to the borehole axis. This contribution to the total

field is usually called the lateral wave. It is exploited in

recent developments in microwave logging [5]–[7]. Unfor-

tunately, the complexity of the borehole environment

greatly complicates the quantitative interpretation. In fact,

additional transmission modes may compete with the de-

sired lateral wave. The physical picture of the propagation

phenomena is shown in Fig. 5, which is highly oversim-
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~ property of wave transmission in stratified media. The
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Fig. 5. Physicaf picture of propagation modes for transmission between
apertures. The receiving slot here is to detect the induced surface
current density.
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Fig. 6. The complex A plane showing the original and deformed con-

tours andthelocation of thepole and branch cut singularities.

plified. The lateral wave is shown as a ray being critically

reflected at the outer cylindrical interface. On the other

hand, any number of waveguide modes maybe transmitted

within the inner concentric layers; only’ one is depicted in

Fig. 5.

If we return to our integral representation given by (44),

we see that the original contour, along the real axis, leads

to a difficult convergence problem because of the highly

oscillatory nature of the integrand. However, we may

deform the contour to encircle the pole singularities de-

noted by x(l), x(2), x(3),. 0., as indicated in Fig. 6. The

deformed contour, of course, must also enclose or be

wrapped around the branch line drawn from the branch

point at A = b~ = – iyN. This standard procedure is also

shown in Fig. 6. Actually, for the present problem, there

are no other branch points because it can be shown that

the integrand in (44) is an even function of u. for n =

1,2,3,. . . , N – 1. This point was nicely demonstrated by

Chew [8] in a related study. In fact, it is a quite general

branch points, associated with the continuous spectra are

only present in open regions or in penetrable core regions,

such as in a dielectric rod. The bounded regions (i.e., the

layers) possess only discrete spectra which correspond to

the waveguide modes.

The general formulation here can be specialized to a

geometry involving only a single layer or coating. We then
recover earlier formulations which have been applied to

radiation from slotted cylinder antennas [9]. In such cases,

we can deal with the integrals using a saddle-point method

which really is an alternative way to cope with the branch

cut contribution. However, if we are interested in the

electromagnetic field at any distance from the cylinder

axis, attention must be paid to the role of the pole singu-

larities which represent the trapped waveguide modes on

the structure. We will deal with these tpatters in a sequel to

this paper.
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